首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10263篇
  免费   1401篇
  国内免费   5790篇
  2024年   16篇
  2023年   388篇
  2022年   444篇
  2021年   527篇
  2020年   651篇
  2019年   763篇
  2018年   710篇
  2017年   709篇
  2016年   676篇
  2015年   645篇
  2014年   646篇
  2013年   815篇
  2012年   663篇
  2011年   616篇
  2010年   535篇
  2009年   698篇
  2008年   640篇
  2007年   720篇
  2006年   643篇
  2005年   599篇
  2004年   529篇
  2003年   548篇
  2002年   430篇
  2001年   407篇
  2000年   353篇
  1999年   346篇
  1998年   266篇
  1997年   264篇
  1996年   273篇
  1995年   238篇
  1994年   229篇
  1993年   212篇
  1992年   170篇
  1991年   139篇
  1990年   169篇
  1989年   146篇
  1988年   127篇
  1987年   81篇
  1986年   76篇
  1985年   55篇
  1984年   53篇
  1983年   18篇
  1982年   88篇
  1981年   32篇
  1980年   28篇
  1979年   27篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 192 毫秒
31.
Tylenchorhynchus robustoides reduced (P = 0.05) growth of Agropyron smithii (western wheatgrass) at soil temperatures of 20, 25, 30, and 35 C. Growth reduction increased with increasing soil temperatures. Highest populations of T. robustoides were recovered at 25 and 30 C. Clipping weights of Buchloe dactyloides (buffalo grass) were reduced at 25 and 30 C; however, root/crown weights were reduced at 15, 20, 30, and 35 C in nematode infested vs. noninfested soil. Reproduction of T. robustoides was greater at 25, 30, and 35 C than at 20 C on B. dactyloides. In a greenhouse study, T. robustoides reduced clipping and root/crown weights of both grasses 24-64%.  相似文献   
32.
33.
Migratory ability of second-stage juveniles (J2) of two Meloidogyne chitwoodi races and a M. hapla population were compared in soil-filled columns at 12, 18, and 24 C. J2 of all populations migrated farthest at 18 C and least at 12 C. Nematode survival was significantly reduced (P = 0.05) at 24 C.M. chitwoodi J2 migrated further and in greater numbers than M. hapla J2 at all temperatures. A comparison with and without a host plant demonstrated no preferential migration toward the plant. Water percolation through the migration columns stimulated upward migration.  相似文献   
34.
There was little release of extractable SO4-S during four weeks from CS2 applied by injecting into two S-deficient soils. In this incubation experiment, the rate of CS2 was 30 μg S g, placement was injection at 9 cm depth, soil temperature was 20°C, and soil moisture tension was 33 kPa. The yield of barley forage after seven weeks in the greenhouse showed only small increases from 10 or 30 μg S g−1 of CS2 as compared to Na2SO4, on the two soils. While CS2 supplied little plant available S in the short term, it was an effective inhibitor of nitrification. In the laboratory, or in the field, the injection of CS2 (with N fertilizers) at a point 9 cm into the soils either stopped or reduced nitrification. In one laboratory experiment, 35 μg of CS2 g−1 of soil with urea reduced nitrification for at least four weeks; and in another experiment 20 μg of CS2 g−1 of soil with aqua NH3 nearly or completely inhibited nitrification at 20 days. In two field experiments, 3 and 12 μg of CS2 g−1 of soil (or 6 and 24 kg ha−1) with aqua NH3 inhibited nitrification from October to the subsequent May. In addition, CS2 reduced the amount of ammonium produced from the soil N, both in these two field experiments and in the laboratory experiments. That is to say, CS2 injected at a point, inhibited both nitrification and ammonification. In other field experiments, CS2 at a rate of 10 kg ha−1 was injected in bands 9 cm deep with urea in October, and by May there was still reduced nitrification. Less than half of the fall-applied urea alone was recovered as mineral N, but with the application of CS2 the recovery was increased to three-quarters. The yield and N uptake of barley grain was increased where fall-applied banded urea or aqua NH3 received banded CS2, (NH4)2CS3, or K2CS3. The average increase in yield from fall-applied fertilizer, from inhibitor with fall-applied fertilizer, and from spring-applied fertilizer was 800, 1370, and 1900 kg ha−1, respectively. In the same order, the apparent % recovery of fertilizer N in grain was 24, 42, and 60.  相似文献   
35.
36.
37.
38.
Summary A differential infrared CO2 analyser combined with a 12 channel gas handling system have been used for the measurement of CO2 evolution rates of soil samples. A constant flow of air over the soil was maintained during the incubation period. Automatic sequential measurement and recording of the increase of the CO2 content of the flushed air of the 12 channels lasted 24 min with a dwell time of 2 min per channel. This technique has proven to be very useful for accurate and rapid measurement of the biological activities in untreated and treated soil.  相似文献   
39.
We explored the potential of the cox1 gene in the species resolution of soil fungi and compared it with the nuclear internal transcribed spacer (ITS) and small subunit (SSU)-rDNA. Conserved primers allowing the amplification of the fungal cox1 gene were designed, and a total of 47 isolates of Zygomycota and Ascomycota were investigated. The analysis revealed a lack of introns in >90% of the isolates. Comparison of the species of each of the six studied genera showed high interspecific sequence polymorphisms. Indeed, the average of nucleotide variations (4.2–11%) according to the genus, due mainly to the nucleotide substitutions, led to the taxonomic resolution of all the species studied regarding both ITS and SSU-rDNA, in which <88% were discriminated. The phylogenetic analysis performed after alignment of the cox1 gene across distant fungal species was in accordance with the well-known taxonomic position of the species studied and no overlap was observed between intra- and interspecific variations. These results clearly demonstrated that the cox1 sequences could provide good molecular markers for the determination of the species composition of environmental samples and constitute an important advance to study soil fungal biodiversity.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号